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                                                      UNIT - V  

Pattern Matching and Tries:  

Pattern matching algorithms-Brute force, the Boyer –Moore algorithm, the Knuth-Morris-Pratt algorithm, 
Standard Tries, Compressed Tries, Suffix tries. 

 

 

String Searching 

• The previous slide is not a great example of what is meant by “String Searching.” Nor is it meant to 
ridicule people without eyes.... 

• The object of string searching is to find the location of a specific text pattern within a larger body of text 
(e.g., a sentence, a paragraph, a book, etc.). 

• As with most algorithms, the main considerations for string searching are speed and efficiency. 

• There are a number of string searching algorithms in existence today, but the two we shall review are 
Brute Force and Rabin-Karp. 

Brute Force 

• The Brute Force algorithm compares the pattern to the text, one character at a time, until unmatching 
characters are found: 

 

TWO ROADS DIVERGED 

ROADS 

IN A YELLOW WOOD 

TWO ROADS DIVERGED 

ROADS 

IN A YELLOW WOOD 

TWO ROADS DIVERGED 

ROADS 

IN A YELLOW WOOD 

TWO ROADS DIVERGED 

ROADS 

IN A YELLOW WOOD 

TWO ROADS DIVERGED IN A YELLOW WOOD 

ROADS 

- Compared characters are italicized. 

- Correct matches are in boldface type. 
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• The algorithm can be designed to stop on either the first occurrence of the pattern, or upon reaching the 
end of the text. 

       Brute Force Pseudo-Code 

• Here’s the pseudo-code 

do 

if (text letter == pattern letter) compare next letter of pattern to next 

letter of text 

else 

move pattern down text by one letter 

while (entire pattern found or end of text) 

 

 
tetththeheehthtehtheththehehtht the 

tetththeheehthtehtheththehehtht 

the tetththeheehthtehtheththehehtht 

the tetththeheehthtehtheththehehtht 

the 

tetththeheehthtehtheththehehtht 

the tetththeheehthtehtheththehehtht 

the 

Brute Force-Complexity 

• Given a pattern M characters in length, and a text N characters in length... 

• Worst case: compares pattern to each substring of text of length M. For example, M=5. 
 

 

1) AAAAAAAAAAAAAAAAAAAAAAAAAAAH AAAAH 5 comparisons made 

2) AAAAAAAAAAAAAAAAAAAAAAAAAAAH AAAAH 5 comparisons made 

3) AAAAAAAAAAAAAAAAAAAAAAAAAAAH AAAAH 5 comparisons made 

4) AAAAAAAAAAAAAAAAAAAAAAAAAAAH AAAAH 5 comparisons made 

5) AAAAAAAAAAAAAAAAAAAAAAAAAAAH AAAAH 5 comparisons made 

.... 

N) AAAAAAAAAAAAAAAAAAAAAAAAAAAH 

5 comparisons made AAAAH 
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• Total number of comparisons: M (N-M+1) 

• Worst case time complexity: (MN) 

Brute Force-Complexity(cont.) 

• Given a pattern M characters in length, and a text N characters in length... 

• Best case if pattern found: Finds pattern in first M positions of text. For example, M=5. 
 

 

1) AAAAAAAAAAAAAAAAAAAAAAAAAAAH AAAAA 5 comparisons made 

 

 

 

• Total number of comparisons: M 

• Best case time complexity: (M) 

Brute Force-Complexity(cont.) 

• Given a pattern M characters in length, and a text N characters in length... 

• Best case if pattern not found: Always mismatch on first character. For example, M=5. 

 

1) AAAAAAAAAAAAAAAAAAAAAAAAAAAH OOOOH 1 comparison made 

2) AAAAAAAAAAAAAAAAAAAAAAAAAAAH 

OOOOH 1 comparison made 

3) AAAAAAAAAAAAAAAAAAAAAAAAAAAH 

OOOOH 1 comparison made 

4) AAAAAAAAAAAAAAAAAAAAAAAAAAAH 

OOOOH 1 comparison made 

5) AAAAAAAAAAAAAAAAAAAAAAAAAAAH 

OOOOH 1 comparison made 

... 
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N) AAAAAAAAAAAAAAAAAAAAAAAAAAAH 

1 comparison made OOOOH 

 

• Total number of comparisons: N 

• Best case time complexity: (N) 

• algorithm will do a Brute Force comparison between the pattern and the M-character sequence. 

• In this way, there is only one comparison per text subsequence, and Brute Force is only needed when 
hash values match. 

• Perhaps a figure will clarify some things... The Rabin-Karp string searching algorithm calculates a 
hash value for the pattern, and for each M-character subsequence of text to be compared. 

• If the hash values are unequal, the algorithm will calculate the hash value for next M-character 
sequence. 

• If the hash values are equal, the 

100=100 

 

• shing is small. 

The Knuth-Morris-Pratt Algorithm 

• The Knuth-Morris-Pratt (KMP) string searching algorithm differs from the brute-force algorithm by 
keeping track of information gained from previous comparisons. 

• A failure function (f) is computed that indicates how much of the last comparison can be reused if it fais. 

• Specifically, f is defined to be the longest prefix of the pattern P[0,..,j] that is also a suffix of P[1,..,j] 

- Note: not a suffix of P[0,..,j] 

• Example: 

- value of the KMP failure function: 
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j 0 1 2 3 4 5 

P[j] a b a b a c 

f(j) 0 0 1 2 3 0 

• This shows how much of the beginning of the string matches up to the portion immediately preceding a 
failed comparison. 

- if the comparison fails at (4), we know the a,b in positions 2,3 is identical to positions 0,1 

The KMP Algorithm (contd.) 

• Time Complexity Analysis 

• define k = i - j 

• In every iteration through the while loop, one of three things happens. 

- 1) if T[i] = P[j], then i increases by 1, as does j k remains the same. 

- 2) if T[i] != P[j] and j > 0, then i does not change and k increases by at least 1, since k changes from i 
- j to i - f(j-1) 

- 3) if T[i] != P[j] and j = 0, then i increases by 1 and 

k increases by 1 since j remains the same. 

• Thus, each time through the loop, either i or k increases by at least 1, so the greatest possible 
number of loops is 2n 

• This of course assumes that f has already been computed. 

• However, f is computed in much the same manner as KMPMatch so the time complexity argument is 
analogous. KMPFailureFunction is O(m) 

• Total Time Complexity: O(n + m) 

The KMP Algorithm (contd.) 

• the KMP string matching algorithm: Pseudo-Code 

 

Algorithm KMPMatch(T,P) 

Input: Strings T (text) with n characters and P 

(pattern) with m characters. 

Output: Starting index of the first substring of T matching P, or an indication that P is not a 
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substring of T. 

 

f  KMPFailureFunction(P) {build failure function} 

i  0 

j  0 

while i < n do 

if P[j] = T[i] then if j = m - 1 then 

return i - m - 1 {a match} 

i  i + 1 

j  j + 1 

else if j > 0 then {no match, but we have advanced} 

j  f(j-1) {j indexes just after matching prefix in P} 

else 

i  i + 1 

return “There is no substring of T matching P” 

The KMP Algorithm (contd.) 

• The KMP failure function: Pseudo-Code 

 

Algorithm KMPFailureFunction(P); 

Input: String P (pattern) with m characters 

Ouput: The faliure function f for P, which maps j to the length of the longest prefix of P that is a 

suffix of P[1,..,j] 

 

i  1 

j  0 

while i  m-1 do 

if P[j] = T[j] then 

{we have matched j + 1 characters} 

f(i)  j + 1 

i  i + 1 

j  j + 1 

else if j > 0 then 

{j indexes just after a prefix of P that matches} 
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7 

b a c a b a 

 
6 

 
5 4 3 1 2 

b a c a b a 

j  f(j-1) else 

{there is no match} 

f(i)  0 

i  i + 1 

The KMP Algorithm (contd.) 

• A graphical representation of the KMP string searching algorithm 
 

 

 

 

 

 

 
 

  
 

no comparison needed 
here 

 

 

 

14 15 16 17 18 19 

Tries 

• A trie is a tree-based date structure for storing strings in order to make pattern matching faster. 

• Tries can be used to perform prefix queries for information retrieval. Prefix queries search for the 
longest prefix of a given string X that matches a prefix of some string in the trie. 

12 8 9 10 11 

b 

b a c a b a 

b a c a b a 

a c a b a 

a a b a c a b a c c a b a a c a b a 

13 



        Department of CSE                                                                                                                                           Page 8 of 27  

• A trie supports the following operations on a set S of strings: 

insert(X): Insert the string X into S 

Input: String Ouput: None 

remove(X): Remove string X from S 

Input: String Output: None 

prefixes(X): Return all the strings in S that have a longest prefix of X 
Input: String Output: Enumeration of strings 

Tries (cont.) 

• Let S be a set of strings from the alphabet  such that no string in S is a prefix to another string. A 
standard trie for S is an ordered tree T that: 

- Each edge of T is labeled with a character from  

- The ordering of edges out of an internal node is determined by the alphabet  

- The path from the root of T to any node represents a prefix in  that is equal to the concantenation of 
the characters encountered while traversing the path. 

• For example, the standard trie over the alphabet  = 

{a, b} for the set {aabab, abaab, babbb, bbaaa, bbab} 

 

a b 

 

a b a b 

 

b a b a b 

 

a a b a a 

 

b b b a b 

 

1 2 3 4 5 



        Department of CSE                                                                                                                                           Page 9 of 27  

Tries (cont.) 

• An internal node can have 1 to d children when d is the size of the alphabet. Our example is essentially a 
binary tree. 

• A path from the root of T to an internal node v at depth i corresponds to an i-character prefix of a 
string of S. 

• We can implement a trie with an ordered tree by storing the character associated with an edge at the 
child node below it. 

Compressed Tries 

• A compressed trie is like a standard trie but makes sure that each trie had a degree of at least 2. Single 
child nodes are compressed into an single edge. 

• A critic al node is a node v such that v is labeled with a string from S, v has at least 2 children, or v is 
the root. 

• To convert a standard trie to a compressed trie we replace an edge (v
0
, v

1
) each chain on nodes (v

0
, 

v
1
...v

k
) for k 2 such that 

- v
0 

and v
1 

are critical but v
1 

is critical for 0<i<k 

- each v1 has only one child 

• Each internal node in a compressed tire has at least two children and each external is associated with a 
string. The compression reduces the total space for the trie from O(m) where m is the sum of the the 
lengths of strings in S to O(n) where n is the number of strings in S. 

Compressed Tries (cont.) 

• An example: 

 

a b 

 

a b a b 

 

 

b a b a b 

 

 

a a b a a 
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b b b a b 

 

 

1 2 3 4 5 

 

 

 

 

a b 

 

 

abab baab abbb b 

 

 

1 2 3 aaa bab 

 

 

4 5 
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Prefix Queries on a Trie 

Algorithm prefixQuery(T, X): 

Input: Trie T for a set S of strings and a query string X 

Output: The node v of T such that the labeled nodes of the subtree of T rooted at v store the strings of 

S with a longest prefix in common with X 

vT.root() 

i0 {i is an index into the string X} 

repeat 

for each child w of v do 

let e be the edge (v,w) 

Ystring(e) {Y is the substring associated with e} lY.length()  {l=1 if 
T is a standard trie} 

Z¨X.substring(i, i+l-1) {Z holds the next l charac ters of X} 

if Z = Y then 

vw 

ii+1{move to W, incrementing i past Z} 

break out of the for loop 

else if a proper prefix of Z matched a proper prefix of Y then 

vw 

break out ot the repeat loop 

until v is external or vw 

return v 

Insertion and Deletion 

• Insertion: We first perform a prefix query for string 

X. Let us examine the ways a prefix query may end in terms of insertion. 

- The query terminates at node v. Let X1 be the prefix of X that matched in the trie up to node v and 
X

2 
be the rest of X. If X

2 
is an empt string we 

label v with X and the end. Otherwise we creat a 

new external node w and label it with X. 

- The query terminates at an edge e=(v, w) because a prefix of X match prefix(v) and a proper prefix of 
string Y associated with e. Let Y1 be the part of Y that X mathed to and Y2 the rest of Y. Likewise for 
X

1 
and X

2
. Then X=X

1
+X

2 
= prefix(v) +Y

1
+X

2
. 

We create a new node u and split the edges(v, u) 

and (u, w). If X2 is empty then w label u with X. Otherwise we creat a node z which is external and label 
it X. 
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• Insertion is O(dn) when d is the size of the alphabet and n is the length of the string t 
insert.Insertion and Deletion (cont.) 

a b 

 

a b a b 

search 

b  a b 

a a 

stops a b 
here 

b a a 

b b b a b 

 

 

1 2 3 4 5 

a b insert(bbaabb) 

 

a b a b 

 

 

b a b a b 

 

 

a a b a a 

 

 

b b b a b b 

 

 

1 2 3 4 b 5 

6 
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Insertion and Deletion (cont.) 

 

 

a b 

 

 

 

abab baab abbb b 

 

 

 

1 2 3 

search stops here 

insert(bbaabb) 

aaa bab 

 

4 5 

 

 

 

a b 

 

 

abab baab abbb b 

 

 

1 2 3 aa bab 

 

 

a bb 5 

Lempel Ziv 

Encoding 

• Constructing the trie: 

- Let phrase 0 be the null 

string. 

- Scan through the text 

- If you 
come 
across a 
letter you 
haven’t 
seen 
before, 

add it to the top level of the trie. 

- If you come across a letter you’ve already seen, scan down 
the trie until you can’t match any more chracters, add a node 
to the trie representing the new string. 

- Insert the pair (nodeIndex, lastChar) into the 
compressed string. 

• Reconstructing the string: 

- Every time you see a ‘0’ in the compressed string add the 
next character in the compressed string directly to the new 
string. 

- For each non-zero nodeIndex, put the substring 
corresponding to that node into the new string, followed 
by the next character in the compressed string. 
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File Compression 

• text files are usually stored by representing each character with an 8-bit ASCII code (type man ascii 
in a Unix shell to see the ASCII encoding) 

• the ASCII encoding is an example of fixed-length encoding, where each character is represented 
with the same number of bits 

• in order to reduce the space required to store a text file, we can exploit the fact that some characters are 
more likely to occur than others 

• variable-length encoding uses binary codes of different lengths for different characters; thus, 
we can assign fewer bits to frequently used characters, and more bits to rarely used characters. 

• Example: 

- text: java 

- encoding: a = “0”, j = “11”, v = “10” 

- encoded text: 110100 (6 bits) 

• How to decode? 

- a = “0”, j = “01”, v = “00” 

- encoded text: 010000 (6 bits) 

- is this java, jvv, jaaaa ... 
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Encoding Trie 

• to prevent ambiguities in decoding, we require that the encoding satisfies the prefix rule, that is, no 
code is a prefix of another code 

- a = “0”, j = “11”, v = “10” satisfies the prefix rule 

- a = “0”, j = “01”, v= “00” does not satisfy the prefix rule (the code of a is a prefix of the codes of j and 
v) 

• we use an encoding trie to define an encoding that satisfies the prefix rule 

- the characters stored at the external nodes 

- a left edge means 0 

- a right edge means 1 

 

 

 

0 1 

 

0 1 0 

A  010 

B  11 

1 
C  00 

C 

0 1 

A R 

D B 

D  10 

R  011 
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A B R A C A D A B R A 
 

See? Decodes like magic... 

 

 

• trie: 

Example of Decoding 

 

 

 

0 1 

 

0 1 0 

A  010 

B  11 

1 
C  00 

C 

0 1 

A R 

D B 

D  10 

R  011 

 

 

 

• encoded text: 

01011011010000101001011011010 

• text: 



        Department of CSE                                                                                                                                           Page 17 of 27  

Trie this! 

 

 

 

 

 

 

 

0 1 

 

 

 

0 1 0 1 

O R 

0 1 0 1 

 

 

 

 

0 1 0 1 

S W T B 

0 1 0 1 

E C K N 

 

 

 

 

 

 

 

 

 

1000011111001001100011101111000101010011010100 
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Optimal Compression 

• An issue with encoding tries is to insure that the encoded text is as short as possible: 

0 1 

 

0 1 0 1 

C D B 

0 1 

A R 

ABRACADABRA 

01011011010000101001011011010 

29 bits 

0 1 

 

0 1 0 1 

A B R 

0 1 

C D 

ABRACADABRA 

001011000100001100101100 

24 bits 
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Huffman Encoding Trie 

 

 

ABRACADABRA 

character A B R C D 

frequency 5 2 2 1 1 

 

 

5 2 2 

A B R 

2 

 

C 1 D 1 

 

 

5 4 2 

A 

B 2 R 2 C 1 D 1 

5 6 

A 

4 2 

 

 

 

2 2 1 1 

B R C D 
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Huffman Encoding Trie (contd.) 

 

 

 

 

 

 

5 6 

A 

4 2 

 

 

 

2 2 1 1 

B R C D 

11 

0 1 

5 6 

A 
0 1 

4 2 

0 1 0 1 

2 2 1 1 

B R C D 
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Final Huffman Encoding Trie 

 

 

 

 

 

 

 

 

 

 

11 

0 1 

5 6 

A 
0 1 

4 2 

0 1 0 1 

2 2 1 1 

B R C D 

 

 

 

 

 

 

A  B R A C A  D A  B  R A 0
 100 101 0 110 0 111 0 100 101 0 

23 bits 
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Another Huffman Encoding Trie 

 

 

 

 

 

 

 

 

ABRACADABRA 

character A B R C D 

 

frequency 5 2 2 1 1 

 

 

5 2 2 

A B R 

 

 

5 2 

A B 

2 

 

C 1 D 1 

 

4 

 

 

2 2 

R 

C 1 D 1 
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Another Huffman Encoding Trie 

 

 

 

 

 

 

 

5 2 

4 

A B 

 

 

2 2 

R 

C 1 D 1 

 

 

 

 

 

5 6 

A 

2 4 

B 

2 2 

R 

C 1 D 1 
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Another Huffman Encoding Trie 

 

 

 

 

 

5 

6 

A 

2 4 

B 

2 2 

R 

C 1 D 1 

 

 

 

11 

 

 

 

5 
6 

A 

2 4 

B 

2 2 

R 

C 1 D 1 
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2 

Another Huffman Encoding Trie 

 

 

 

 

 

 

 

11 

0 1 

 

5 
0 

6 

A 

2 

B 
0
 

2 

R 

 

 

 

1 

4 

1 

 

0 1 

C 1 D 1 

 

 

 

 

 

 

 

A  B R A C A D A B R A 0
 10 110 0 1100 0 1111 0 10 110 0 

23 bits 
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Construction Algorithm 

• with a Huffman encoding trie, the encoded text has minimal length 
 

Algorithm Huffman(X): Input: String X of length n 

Output: Encoding trie for X 

 

Compute the frequency f(c) of each character c of X. Initialize a priority queue Q. 

 

for each character c in X do 

Create a single-node tree T storing c Q.insertItem(f(c), T) 

while Q.size() > 1 do 

f1  Q.minKey() 

T1  Q.removeMinElement() f2  Q.minKey() 

T2  Q.removeMinElement() 

Create a new tree T with left subtree T1 and right subtree T2. 

Q.insertItem(f1 + f2) 

return tree Q.removeMinElement() 

• runing time for a text of length n with k distinct characters: O(n + k log k) 
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111 

010 101 

011 110 001 100 

Image Compression 

• we can use Huffman encoding also for binary files (bitmaps, executables, etc.) 

• common groups of bits are stored at the leaves 

• Example of an encoding suitable for b/w bitmaps 

 

 

 

 

 

 

0 1 

 

 

 

0 1 0 1 

 

 

 

0 1 0 1 

 

0 1 0 1 

 

000 
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