
 Department of CSE Page 1 of 27

 UNIT - V

Pattern Matching and Tries:

Pattern matching algorithms-Brute force, the Boyer –Moore algorithm, the Knuth-Morris-Pratt algorithm,
Standard Tries, Compressed Tries, Suffix tries.

String Searching

• The previous slide is not a great example of what is meant by “String Searching.” Nor is it meant to
ridicule people without eyes....

• The object of string searching is to find the location of a specific text pattern within a larger body of text
(e.g., a sentence, a paragraph, a book, etc.).

• As with most algorithms, the main considerations for string searching are speed and efficiency.

• There are a number of string searching algorithms in existence today, but the two we shall review are
Brute Force and Rabin-Karp.

Brute Force

• The Brute Force algorithm compares the pattern to the text, one character at a time, until unmatching
characters are found:

TWO ROADS DIVERGED

ROADS

IN A YELLOW WOOD

TWO ROADS DIVERGED

ROADS

IN A YELLOW WOOD

TWO ROADS DIVERGED

ROADS

IN A YELLOW WOOD

TWO ROADS DIVERGED

ROADS

IN A YELLOW WOOD

TWO ROADS DIVERGED IN A YELLOW WOOD

ROADS

- Compared characters are italicized.

- Correct matches are in boldface type.

 Department of CSE Page 2 of 27

• The algorithm can be designed to stop on either the first occurrence of the pattern, or upon reaching the
end of the text.

 Brute Force Pseudo-Code

• Here’s the pseudo-code

do

if (text letter == pattern letter) compare next letter of pattern to next

letter of text

else

move pattern down text by one letter

while (entire pattern found or end of text)

tetththeheehthtehtheththehehtht the

tetththeheehthtehtheththehehtht

the tetththeheehthtehtheththehehtht

the tetththeheehthtehtheththehehtht

the

tetththeheehthtehtheththehehtht

the tetththeheehthtehtheththehehtht

the

Brute Force-Complexity

• Given a pattern M characters in length, and a text N characters in length...

• Worst case: compares pattern to each substring of text of length M. For example, M=5.

1) AAAAAAAAAAAAAAAAAAAAAAAAAAAH AAAAH 5 comparisons made

2) AAAAAAAAAAAAAAAAAAAAAAAAAAAH AAAAH 5 comparisons made

3) AAAAAAAAAAAAAAAAAAAAAAAAAAAH AAAAH 5 comparisons made

4) AAAAAAAAAAAAAAAAAAAAAAAAAAAH AAAAH 5 comparisons made

5) AAAAAAAAAAAAAAAAAAAAAAAAAAAH AAAAH 5 comparisons made

....

N) AAAAAAAAAAAAAAAAAAAAAAAAAAAH

5 comparisons made AAAAH

 Department of CSE Page 3 of 27

• Total number of comparisons: M (N-M+1)

• Worst case time complexity: (MN)

Brute Force-Complexity(cont.)

• Given a pattern M characters in length, and a text N characters in length...

• Best case if pattern found: Finds pattern in first M positions of text. For example, M=5.

1) AAAAAAAAAAAAAAAAAAAAAAAAAAAH AAAAA 5 comparisons made

• Total number of comparisons: M

• Best case time complexity: (M)

Brute Force-Complexity(cont.)

• Given a pattern M characters in length, and a text N characters in length...

• Best case if pattern not found: Always mismatch on first character. For example, M=5.

1) AAAAAAAAAAAAAAAAAAAAAAAAAAAH OOOOH 1 comparison made

2) AAAAAAAAAAAAAAAAAAAAAAAAAAAH

OOOOH 1 comparison made

3) AAAAAAAAAAAAAAAAAAAAAAAAAAAH

OOOOH 1 comparison made

4) AAAAAAAAAAAAAAAAAAAAAAAAAAAH

OOOOH 1 comparison made

5) AAAAAAAAAAAAAAAAAAAAAAAAAAAH

OOOOH 1 comparison made

...

 Department of CSE Page 4 of 27

N) AAAAAAAAAAAAAAAAAAAAAAAAAAAH

1 comparison made OOOOH

• Total number of comparisons: N

• Best case time complexity: (N)

• algorithm will do a Brute Force comparison between the pattern and the M-character sequence.

• In this way, there is only one comparison per text subsequence, and Brute Force is only needed when
hash values match.

• Perhaps a figure will clarify some things... The Rabin-Karp string searching algorithm calculates a
hash value for the pattern, and for each M-character subsequence of text to be compared.

• If the hash values are unequal, the algorithm will calculate the hash value for next M-character
sequence.

• If the hash values are equal, the

100=100

• shing is small.

The Knuth-Morris-Pratt Algorithm

• The Knuth-Morris-Pratt (KMP) string searching algorithm differs from the brute-force algorithm by
keeping track of information gained from previous comparisons.

• A failure function (f) is computed that indicates how much of the last comparison can be reused if it fais.

• Specifically, f is defined to be the longest prefix of the pattern P[0,..,j] that is also a suffix of P[1,..,j]

- Note: not a suffix of P[0,..,j]

• Example:

- value of the KMP failure function:

 Department of CSE Page 5 of 27

j 0 1 2 3 4 5

P[j] a b a b a c

f(j) 0 0 1 2 3 0

• This shows how much of the beginning of the string matches up to the portion immediately preceding a
failed comparison.

- if the comparison fails at (4), we know the a,b in positions 2,3 is identical to positions 0,1

The KMP Algorithm (contd.)

• Time Complexity Analysis

• define k = i - j

• In every iteration through the while loop, one of three things happens.

- 1) if T[i] = P[j], then i increases by 1, as does j k remains the same.

- 2) if T[i] != P[j] and j > 0, then i does not change and k increases by at least 1, since k changes from i
- j to i - f(j-1)

- 3) if T[i] != P[j] and j = 0, then i increases by 1 and

k increases by 1 since j remains the same.

• Thus, each time through the loop, either i or k increases by at least 1, so the greatest possible
number of loops is 2n

• This of course assumes that f has already been computed.

• However, f is computed in much the same manner as KMPMatch so the time complexity argument is
analogous. KMPFailureFunction is O(m)

• Total Time Complexity: O(n + m)

The KMP Algorithm (contd.)

• the KMP string matching algorithm: Pseudo-Code

Algorithm KMPMatch(T,P)

Input: Strings T (text) with n characters and P

(pattern) with m characters.

Output: Starting index of the first substring of T matching P, or an indication that P is not a

 Department of CSE Page 6 of 27

substring of T.

f  KMPFailureFunction(P) {build failure function}

i  0

j  0

while i < n do

if P[j] = T[i] then if j = m - 1 then

return i - m - 1 {a match}

i  i + 1

j  j + 1

else if j > 0 then {no match, but we have advanced}

j  f(j-1) {j indexes just after matching prefix in P}

else

i  i + 1

return “There is no substring of T matching P”

The KMP Algorithm (contd.)

• The KMP failure function: Pseudo-Code

Algorithm KMPFailureFunction(P);

Input: String P (pattern) with m characters

Ouput: The faliure function f for P, which maps j to the length of the longest prefix of P that is a

suffix of P[1,..,j]

i  1

j  0

while i  m-1 do

if P[j] = T[j] then

{we have matched j + 1 characters}

f(i)  j + 1

i  i + 1

j  j + 1

else if j > 0 then

{j indexes just after a prefix of P that matches}

 Department of CSE Page 7 of 27

7

b a c a b a

6

5 4 3 1 2

b a c a b a

j  f(j-1) else

{there is no match}

f(i)  0

i  i + 1

The KMP Algorithm (contd.)

• A graphical representation of the KMP string searching algorithm

no comparison needed
here

14 15 16 17 18 19

Tries

• A trie is a tree-based date structure for storing strings in order to make pattern matching faster.

• Tries can be used to perform prefix queries for information retrieval. Prefix queries search for the
longest prefix of a given string X that matches a prefix of some string in the trie.

12 8 9 10 11

b

b a c a b a

b a c a b a

a c a b a

a a b a c a b a c c a b a a c a b a

13

 Department of CSE Page 8 of 27

• A trie supports the following operations on a set S of strings:

insert(X): Insert the string X into S

Input: String Ouput: None

remove(X): Remove string X from S

Input: String Output: None

prefixes(X): Return all the strings in S that have a longest prefix of X
Input: String Output: Enumeration of strings

Tries (cont.)

• Let S be a set of strings from the alphabet  such that no string in S is a prefix to another string. A
standard trie for S is an ordered tree T that:

- Each edge of T is labeled with a character from 

- The ordering of edges out of an internal node is determined by the alphabet 

- The path from the root of T to any node represents a prefix in  that is equal to the concantenation of
the characters encountered while traversing the path.

• For example, the standard trie over the alphabet  =

{a, b} for the set {aabab, abaab, babbb, bbaaa, bbab}

a b

a b a b

b a b a b

a a b a a

b b b a b

1 2 3 4 5

 Department of CSE Page 9 of 27

Tries (cont.)

• An internal node can have 1 to d children when d is the size of the alphabet. Our example is essentially a
binary tree.

• A path from the root of T to an internal node v at depth i corresponds to an i-character prefix of a
string of S.

• We can implement a trie with an ordered tree by storing the character associated with an edge at the
child node below it.

Compressed Tries

• A compressed trie is like a standard trie but makes sure that each trie had a degree of at least 2. Single
child nodes are compressed into an single edge.

• A critic al node is a node v such that v is labeled with a string from S, v has at least 2 children, or v is
the root.

• To convert a standard trie to a compressed trie we replace an edge (v
0
, v

1
) each chain on nodes (v

0
,

v
1
...v

k
) for k 2 such that

- v
0

and v
1

are critical but v
1

is critical for 0<i<k

- each v1 has only one child

• Each internal node in a compressed tire has at least two children and each external is associated with a
string. The compression reduces the total space for the trie from O(m) where m is the sum of the the
lengths of strings in S to O(n) where n is the number of strings in S.

Compressed Tries (cont.)

• An example:

a b

a b a b

b a b a b

a a b a a

 Department of CSE Page 10 of 27

b b b a b

1 2 3 4 5

a b

abab baab abbb b

1 2 3 aaa bab

4 5

 Department of CSE Page 11 of 27

Prefix Queries on a Trie

Algorithm prefixQuery(T, X):

Input: Trie T for a set S of strings and a query string X

Output: The node v of T such that the labeled nodes of the subtree of T rooted at v store the strings of

S with a longest prefix in common with X

vT.root()

i0 {i is an index into the string X}

repeat

for each child w of v do

let e be the edge (v,w)

Ystring(e) {Y is the substring associated with e} lY.length() {l=1 if
T is a standard trie}

Z¨X.substring(i, i+l-1) {Z holds the next l charac ters of X}

if Z = Y then

vw

ii+1{move to W, incrementing i past Z}

break out of the for loop

else if a proper prefix of Z matched a proper prefix of Y then

vw

break out ot the repeat loop

until v is external or vw

return v

Insertion and Deletion

• Insertion: We first perform a prefix query for string

X. Let us examine the ways a prefix query may end in terms of insertion.

- The query terminates at node v. Let X1 be the prefix of X that matched in the trie up to node v and
X

2
be the rest of X. If X

2
is an empt string we

label v with X and the end. Otherwise we creat a

new external node w and label it with X.

- The query terminates at an edge e=(v, w) because a prefix of X match prefix(v) and a proper prefix of
string Y associated with e. Let Y1 be the part of Y that X mathed to and Y2 the rest of Y. Likewise for
X

1
and X

2
. Then X=X

1
+X

2
= prefix(v) +Y

1
+X

2
.

We create a new node u and split the edges(v, u)

and (u, w). If X2 is empty then w label u with X. Otherwise we creat a node z which is external and label
it X.

 Department of CSE Page 12 of 27

• Insertion is O(dn) when d is the size of the alphabet and n is the length of the string t
insert.Insertion and Deletion (cont.)

a b

a b a b

search

b a b

a a

stops a b
here

b a a

b b b a b

1 2 3 4 5

a b insert(bbaabb)

a b a b

b a b a b

a a b a a

b b b a b b

1 2 3 4 b 5

6

 Department of CSE Page 13 of 27

Insertion and Deletion (cont.)

a b

abab baab abbb b

1 2 3

search stops here

insert(bbaabb)

aaa bab

4 5

a b

abab baab abbb b

1 2 3 aa bab

a bb 5

Lempel Ziv

Encoding

• Constructing the trie:

- Let phrase 0 be the null

string.

- Scan through the text

- If you
come
across a
letter you
haven’t
seen
before,

add it to the top level of the trie.

- If you come across a letter you’ve already seen, scan down
the trie until you can’t match any more chracters, add a node
to the trie representing the new string.

- Insert the pair (nodeIndex, lastChar) into the
compressed string.

• Reconstructing the string:

- Every time you see a ‘0’ in the compressed string add the
next character in the compressed string directly to the new
string.

- For each non-zero nodeIndex, put the substring
corresponding to that node into the new string, followed
by the next character in the compressed string.

 Department of CSE Page 14 of 27

File Compression

• text files are usually stored by representing each character with an 8-bit ASCII code (type man ascii
in a Unix shell to see the ASCII encoding)

• the ASCII encoding is an example of fixed-length encoding, where each character is represented
with the same number of bits

• in order to reduce the space required to store a text file, we can exploit the fact that some characters are
more likely to occur than others

• variable-length encoding uses binary codes of different lengths for different characters; thus,
we can assign fewer bits to frequently used characters, and more bits to rarely used characters.

• Example:

- text: java

- encoding: a = “0”, j = “11”, v = “10”

- encoded text: 110100 (6 bits)

• How to decode?

- a = “0”, j = “01”, v = “00”

- encoded text: 010000 (6 bits)

- is this java, jvv, jaaaa ...

 Department of CSE Page 15 of 27

Encoding Trie

• to prevent ambiguities in decoding, we require that the encoding satisfies the prefix rule, that is, no
code is a prefix of another code

- a = “0”, j = “11”, v = “10” satisfies the prefix rule

- a = “0”, j = “01”, v= “00” does not satisfy the prefix rule (the code of a is a prefix of the codes of j and
v)

• we use an encoding trie to define an encoding that satisfies the prefix rule

- the characters stored at the external nodes

- a left edge means 0

- a right edge means 1

0 1

0 1 0

A  010

B  11

1
C  00

C

0 1

A R

D B

D  10

R  011

 Department of CSE Page 16 of 27

A B R A C A D A B R A

See? Decodes like magic...

• trie:

Example of Decoding

0 1

0 1 0

A  010

B  11

1
C  00

C

0 1

A R

D B

D  10

R  011

• encoded text:

01011011010000101001011011010

• text:

 Department of CSE Page 17 of 27

Trie this!

0 1

0 1 0 1

O R

0 1 0 1

0 1 0 1

S W T B

0 1 0 1

E C K N

1000011111001001100011101111000101010011010100

 Department of CSE Page 18 of 27

Optimal Compression

• An issue with encoding tries is to insure that the encoded text is as short as possible:

0 1

0 1 0 1

C D B

0 1

A R

ABRACADABRA

01011011010000101001011011010

29 bits

0 1

0 1 0 1

A B R

0 1

C D

ABRACADABRA

001011000100001100101100

24 bits

 Department of CSE Page 19 of 27

Huffman Encoding Trie

ABRACADABRA

character A B R C D

frequency 5 2 2 1 1

5 2 2

A B R

2

C 1 D 1

5 4 2

A

B 2 R 2 C 1 D 1

5 6

A

4 2

2 2 1 1

B R C D

 Department of CSE Page 20 of 27

Huffman Encoding Trie (contd.)

5 6

A

4 2

2 2 1 1

B R C D

11

0 1

5 6

A
0 1

4 2

0 1 0 1

2 2 1 1

B R C D

 Department of CSE Page 21 of 27

Final Huffman Encoding Trie

11

0 1

5 6

A
0 1

4 2

0 1 0 1

2 2 1 1

B R C D

A B R A C A D A B R A 0
 100 101 0 110 0 111 0 100 101 0

23 bits

 Department of CSE Page 22 of 27

Another Huffman Encoding Trie

ABRACADABRA

character A B R C D

frequency 5 2 2 1 1

5 2 2

A B R

5 2

A B

2

C 1 D 1

4

2 2

R

C 1 D 1

 Department of CSE Page 23 of 27

Another Huffman Encoding Trie

5 2

4

A B

2 2

R

C 1 D 1

5 6

A

2 4

B

2 2

R

C 1 D 1

 Department of CSE Page 24 of 27

Another Huffman Encoding Trie

5

6

A

2 4

B

2 2

R

C 1 D 1

11

5
6

A

2 4

B

2 2

R

C 1 D 1

 Department of CSE Page 25 of 27

2

Another Huffman Encoding Trie

11

0 1

5
0

6

A

2

B
0

2

R

1

4

1

0 1

C 1 D 1

A B R A C A D A B R A 0
 10 110 0 1100 0 1111 0 10 110 0

23 bits

 Department of CSE Page 26 of 27

Construction Algorithm

• with a Huffman encoding trie, the encoded text has minimal length

Algorithm Huffman(X): Input: String X of length n

Output: Encoding trie for X

Compute the frequency f(c) of each character c of X. Initialize a priority queue Q.

for each character c in X do

Create a single-node tree T storing c Q.insertItem(f(c), T)

while Q.size() > 1 do

f1  Q.minKey()

T1  Q.removeMinElement() f2  Q.minKey()

T2  Q.removeMinElement()

Create a new tree T with left subtree T1 and right subtree T2.

Q.insertItem(f1 + f2)

return tree Q.removeMinElement()

• runing time for a text of length n with k distinct characters: O(n + k log k)

 Department of CSE Page 27 of 27

111

010 101

011 110 001 100

Image Compression

• we can use Huffman encoding also for binary files (bitmaps, executables, etc.)

• common groups of bits are stored at the leaves

• Example of an encoding suitable for b/w bitmaps

0 1

0 1 0 1

0 1 0 1

0 1 0 1

000

	String Searching
	Brute Force
	Brute Force Pseudo-Code
	Brute Force-Complexity
	Brute Force-Complexity(cont.)
	Brute Force-Complexity(cont.) (1)
	The Knuth-Morris-Pratt Algorithm
	The KMP Algorithm (contd.)
	The KMP Algorithm (contd.) (1)
	The KMP Algorithm (contd.) (2)
	Tries
	Tries (cont.)
	Tries (cont.) (1)
	Compressed Tries
	Compressed Tries (cont.)
	Prefix Queries on a Trie
	Insertion and Deletion
	Insertion and Deletion (cont.)
	abab baab abbb b
	search stops here

	Lempel Ziv Encoding
	File Compression
	Encoding Trie
	Example of Decoding
	Trie this!
	Optimal Compression
	Huffman Encoding Trie
	Huffman Encoding Trie (contd.)
	Final Huffman Encoding Trie
	11
	5 6
	4 2
	2 2 1 1

	Another Huffman Encoding Trie
	Another Huffman Encoding Trie (1)
	Another Huffman Encoding Trie (2)
	Another Huffman Encoding Trie (3)
	Construction Algorithm
	Image Compression

