UNIT - V

Pattern Matching and Tries:

Pattern matching algorithms-Brute force, the Boyer -Moore algorithm, the Knuth-Morris-Pratt algorithm, Standard Tries, Compressed Tries, Suffix tries.

String Searching

- The previous slide is not a great example of what ismeant by "String Searching." Nor is it meant to ridicule people without eyes....
- The object of string searching is to find the locationof a specific text pattern within a larger body of text (e.g., a sentence, a paragraph, a book, etc.).
- As with most algorithms, the main considerationsfor string searching are speed and efficiency.
- There are a number of string searching algorithms inexistence today, but the two we shall review are Brute Force and Rabin-Karp.

Brute Force

- The Brute Force algorithm compares the pattern tothe text, one character at a time, until unmatching characters are found:

TWO ROADS DIVERGED	IN	A	YELLOW	WOOD
ROADS				
TWO ROADS DIVERGED	IN	A	YELLOW	WOOD
ROADS				
TWO ROADS DIVERGED	IN	A	YELLOW	WOOD
ROADS				
TWO ROADS DIVERGED	IN	A	YELLOW	WOOD
ROADS				
TWO ROADS DIVERGED	IN	A	YELLOW	WOOD
ROADS				

- Compared characters are italicized.
- Correct matches are in boldface type.
- The algorithm can be designed to stop on either thefirst occurrence of the pattern, or upon reaching the end of the text.

Brute Force Pseudo-Code

- Here's the pseudo-code

do

if (text letter == pattern letter) compare next letter of pattern to next letter of text
else
move pattern down text by one letter
while (entire pattern found or end of text)
tetththeheehthtehtheththehehthtthe
tetththeheehthtehtheththehehtht
the tetththeheehthtehtheththehehtht
the tetththeheehthtehtheththehehtht
the
tetththeheehthtehtheththehehtht the tetththeheehthtehtheththehehtht the

Brute Force-Complexity

- Given a pattern M characters in length, and a text Ncharacters in length...
- Worst case: compares pattern to each substring oftext of length M.For example, M=5.

1) $A A A A A$ AAAAAAAAAAAAAAAAAAAAAAH $A A A A$

2) $A H A A A A H$
3) $A A A A A$ AAAAAAAAAAAAAAAAAAAAAAH $A A A H$
4) $A H A A A H$

5 comparisons made
N) AAAAAAAAAAAAAAAAAAAAAAAAAAAH

- Total number of comparisons: $\mathrm{M}(\mathrm{N}-\mathrm{M}+1)$
- Worst case time complexity: $\mathrm{O}(\mathrm{MN})$

Brute Force-Complexity(cont.)

- Given a pattern M characters in length, and a text Ncharacters in length...
- Best case if pattern found: Finds pattern in first Mpositions of text. For example, M=5.

1) $A H A A A A A \quad 5$ comparisons made

- Total number of comparisons: M
- Best case time complexity: $\mathrm{O}(\mathrm{M})$

Brute Force-Complexity(cont.)

- Given a pattern M characters in length, and a text Ncharacters in length...
- Best case if pattern not found: Always mismatchon first character. For example, M=5.

1) AAAAAAAAAAAAAAAAAAAAAAAAAAAH $O O O O H$ 1 comparison made
2) AAAAAAAAAAAAAAAAAAAAAAAAAAAH
$O \mathrm{OOOH} 1$ comparison made
3) AAAAAAAAAAAAAAAAAAAAAAAAAAAH
$O \mathrm{OOOH} 1$ comparison made
4) AAAAAAAAAAAAAAAAAAAAAAAAAAAH

OOOOH 1 comparison made
5) AAAAAAAAAAAAAAAAAAAAAAAAAAAH
$O \mathrm{OOOH} 1$ comparison made

1 comparison made

- Total number of comparisons: N
- Best case time complexity: $\mathrm{O}(\mathrm{N})$
- algorithm will do aBrute Force comparison between the pattern and theM-character sequence.
- In this way, there is only one comparison per text subsequence, and Brute Force is only needed when hash values match.
- Perhaps a figure will clarify some things... The Rabin-Karp string searching algorithm calculates a hash value for the pattern, and for eachM-character subsequence of text to be compared.
- If the hash values are unequal, the algorithm willcalculate the hash value for next M-character sequence.
- If the hash values are equal, the
$100=100$
- shing is small.

The Knuth-Morris-PrattAlgorithm

- The Knuth-Morris-Pratt (KMP) string searching algorithm differs from the brute-force algorithm by keeping track of information gained from previouscomparisons.
- A failure function (f) is computed that indicates howmuch of the last comparison can be reused if it fais.
- Specifically, f is defined to be the longest prefix ofthe pattern $\mathrm{P}[0, . ., \mathrm{j}]$ that is also a suffix of $\mathrm{P}[1, \ldots, \mathrm{j}]$
- Note: not a suffix of P[0,..,j]
- Example:
- value of the KMP failure function:

j	0	1	2	3	4	5
$P[j]$	a	b	a	b	a	c
$f(j)$	0	0	1	2	3	0

- This shows how much of the beginning of the stringmatches up to the portion immediately preceding a failed comparison.
- if the comparison fails at (4), we know the a,b inpositions 2,3 is identical to positions 0,1

The KMP Algorithm (contd.)

- Time Complexity Analysis
define $k=i-j$
- In every iteration through the while loop, one ofthree things happens.
- $\quad 1$) if $T[i]=P[j]$, then i increases by 1 , as does $j k$ remains the same.
- 2) if $T[i]!=P[j]$ and $j>0$, then i does not change and k increases by at least 1 , since k changesfrom i $-j$ to $i-f(j-1)$
- $\quad 3)$ if $T[i]!=P[j]$ and $j=0$, then i increases by 1 and
k increases by 1 since j remains the same.
- Thus, each time through the loop, either i or k increases by at least 1 , so the greatest possible number of loops is $2 n$
- This of course assumes that f has already beencomputed.
- However, f is computed in much the same manner asKMPMatch so the time complexity argument is analogous. KMPFailureFunction is $\boldsymbol{O}(m)$
- Total Time Complexity: $\boldsymbol{O}(n+m)$

The KMP Algorithm (contd.)
the KMP string matching algorithm: Pseudo-Code
Algorithm KMPMatch (T, P)
Input: Strings T (text) with n characters and P
(pattern) with m characters.
Output: Starting index of the first substring of T matching P, or an indication that P is not a
substring of T.

$$
\begin{aligned}
& f \leftarrow \text { KMPFailureFunction }(P) \text { \{build failure function }\} \\
& i \leftarrow 0 \\
& \begin{array}{l}
j \leftarrow 0 \\
\text { while } i<n \text { do } \\
\quad \text { if } P[j]=T[i] \text { thenif } j=m-1 \text { then } \\
\quad \text { return } i-m-1 \text { \{a match }\} \\
\qquad i \leftarrow i+1 \\
\quad j \leftarrow j+1 \\
\quad \text { else if } j>0 \text { then }\{\text { no match, but we have advanced }\} \\
\quad j \leftarrow f(j-1)\{\mathrm{j} \text { indexes just after matching prefix in } \mathrm{P}\} \\
\quad \text { else } \\
\quad i \leftarrow i+1 \quad \text { return "There is no substring of } T \text { matching } P \text { " } \\
\text { The KMP Algorithm (contd.) }
\end{array}
\end{aligned}
$$

- The KMP failure function: Pseudo-Code

Algorithm KMPFailureFunction (P);
Input: String P (pattern) with m characters
Ouput: The faliure function f for P, which maps j tothe length of the longest prefix of P that is a suffixof $P[1, . ., j]$
$i \leftarrow 1$
$j \leftarrow 0$
while $i \leq m-1$ do
if $P[j]=\mathrm{T}[j]$ then
$\{$ we have matched $j+1$ characters $\}$
$f(i) \leftarrow j+1$
$i \leftarrow i+1$
$j \leftarrow j+1$
else if $j>0$ then
$\{j$ indexes just after a prefix of P that matches $\}$

$$
j \leftarrow f(j-1) \text { else }
$$

\{there is no match\}
$f(i) \leftarrow 0$
$i \leftarrow i+1$
The KMP Algorithm (contd.)

- A graphical representation of the KMP stringsearching algorithm

no comparisonneeded here

- A trie is a tree-based date structure for storing strings in order to make pattern matching faster.
- Tries can be used to perform prefix queries for information retrieval. Prefix queries search for the longest prefix of a given string X that matches a prefix of some string in the trie.
- A trie supports the following operations on a set S ofstrings:
insert(X): Insert the string X into S
Input: String Ouput: None
remove(X): Remove string X from S
Input: String Output: None
prefixes(X): Return all the strings in S that have alongest prefix of X
Input: String Output: Enumeration ofstrings

Tries (cont.)

- Let S be a set of strings from the alphabet Σ suchthat no string in S is a prefix to another string. A standard trie for S is an ordered tree T that:
- Each edge of T is labeled with a character from Σ
- The ordering of edges out of an internal node isdetermined by the alphabet Σ
- The path from the root of T to any node representsa prefix in Σ that is equal to the concantenation of the characters encountered while traversing the path.
- For example, the standard trie over the alphabet $\Sigma=$
$\{a, b\}$ for the set $\{a a b a b, a b a a b, b a b b b, b b a a a, b b a b\}$
b
a
b

Tries (cont.)

- An internal node can have 1 to d children when d isthe size of the alphabet. Our example is essentially a binary tree.
- A path from the root of T to an internal node v atdepth i corresponds to an i-character prefix of a string of S.
- We can implement a trie with an ordered tree by storing the character associated with an edge at the child node below it.

Compressed Tries

- A compressed trie is like a standard trie but makessure that each trie had a degree of at least 2 . Single child nodes are compressed into an single edge.
- A critical node is a node v such that v is labeled witha string from S, v has at least 2 children, or v is the root.
- To convert a standard trie to a compressed trie wereplace an edge $\left(\mathrm{v}_{0}, \mathrm{v}_{1}\right)$ each chain on nodes $\left(\mathrm{v}_{0}\right.$, $\mathrm{v}_{1} \ldots \mathrm{v}_{\mathrm{k}}$) for k 2 such that
- v_{0} and v_{1} are critical but v_{1} is critical for $0<i<k$
- each v_{1} has only one child
- Each internal node in a compressed tire has at least two children and each external is associated with a string. The compression reduces the total space for the trie from $\mathrm{O}(m)$ where m is the sum of the the lengths of strings in S to $\mathrm{O}(n)$ where n is the numberof strings in S.

Compressed Tries (cont.)

- An example:
a
a
b
b
a
b
a
a
b
b
a

Prefix Queries on a Trie

```
Algorithm prefixQuery( \(T, X\) ):
    Input: Trie \(T\) for a set S of strings and a query string \(X\)
    Output: The node \(v\) of \(T\) such that the labeled nodes ofthe subtree of \(T\) rooted at \(v\) store the strings of
                                    \(S\) with a longest prefix in common with \(X\)
    \(\nu \leftarrow T\).root()
    \(i \leftarrow 0 \quad\{i\) is an index into the string \(X\}\)
    repea \(t\)
        for each child \(w\) of \(v\) do
        let \(e\) be the \(e\) dge \((v, w)\)
        \(Y \leftarrow \operatorname{string}(e) \quad\{Y\) is the substring associated with \(e\} l \leftarrow Y\).length ()\(\quad\{l=1\) if
        \(T\) is a standard trie \(\}\)
        \(Z \because X\).substring \((i, i+l-1)\{Z\) holds the next \(l\) characters of \(X\}\)
        if \(\mathrm{Z}=\mathrm{Y}\) then
            \(v \leftarrow \mathrm{~W}\)
            \(i \leftarrow i+1\) \{ move to W , incrementing \(i\) past Z\(\}\)
            break out of the for loop
        else if a proper prefix of Z matched a proper prefix of Y then
            \(v \leftarrow \mathrm{~W}\)
            break out ot the repeat loop
until \(v\) is external or \(v \neq \mathrm{W}\)
return \(v\)
```


Insertion and Deletion

- Insertion: We first perform a prefix query for string

X . Let us examine the ways a prefix query may endin terms of insertion.

- The query terminates at node v. Let X_{1} be the prefix of X that matched in the trie up to node v and X_{2} be the rest of X. If X_{2} is an empt string we
label v with X and the end. Otherwise we creat a
new external node w and label it with X .
- The query terminates at an edge $\mathrm{e}=(\mathrm{v}, \mathrm{w})$ because a prefix of X match prefix(v) and a proper prefix of string Y associated with e. Let Y_{1} be the part of Ythat X mathed to and Y_{2} the rest of Y. Likewise for X_{1} and X_{2}. Then $X=X_{1}+X_{2}=\operatorname{prefix}(v)+Y_{1}+X_{2}$.

We create a new node u and split the edges (v, u)
and (u, w). If X 2 is empty then w label u with X . Otherwise we creat a node z which is external andlabel it X .

File Compression

- text files are usually stored by representing each character with an 8-bit ASCII code (type man ascii ina Unix shell to see the ASCII encoding)
- the ASCII encoding is an example of fixed-length encoding, where each character is represented withthe same number of bits
- in order to reduce the space required to store a text file, we can exploit the fact that some characters are more likely to occur than others
- variable-length encoding uses binary codes of different lengths for different characters; thus, we can assign fewer bits to frequently used characters, and more bits to rarely used characters.
- Example:
- text: java
- encoding: $\mathrm{a}=" 0 ", \mathrm{j}=" 11 ", \mathrm{v}=" 10$ "
- encoded text: 110100 (6 bits)
- How to decode?
- $\mathrm{a}=$ " $0 ", \mathrm{j}=" 01 ", \mathrm{v}=" 00$ "
- encoded text: 010000 (6 bits)
- is this java, jvv, jaaaa ...

Encoding Trie

- to prevent ambiguities in decoding, we require that the encoding satisfies the prefix rule, that is, no codeis a prefix of another code
- $a=" 0 ", j=" 11 ", v=" 10 "$ satisfies the prefix rule
- $a=" 0 ", j=" 01 ", v=" 00 "$ does not satisfy the prefix rule (the code of a is a prefix of the codes of j and v)
- we use an encoding trie to define an encoding thatsatisfies the prefix rule
- the characters stored at the external nodes
- a left edge means 0
- a right edge means 1

Example of Decoding

- trie:

text:
$\begin{array}{lllllllllll}\mathbf{A} & \mathbf{B} & \mathbf{R} & \mathbf{A} & \mathbf{C} & \mathbf{A} & \mathbf{D} & \mathbf{A} & \mathbf{B} & \mathbf{R} & \mathbf{A}\end{array}$

Trie this!

Optimal Compression

- An issue with encoding tries is to insure that theencoded text is as short as possible:

1
$0 \quad 1$

A B
B $\quad \mathrm{R}$

1

Huffman Encoding Trie

Huffman Encoding Trie (contd.)

Final Huffman Encoding Trie

Another Huffman Encoding Trie

Another Huffman Encoding Trie

Another Huffman Encoding Trie

Construction Algorithm

- with a Huffman encoding trie, the encoded text hasminimal length

```
Algorithm Huffman(X): Input: String }X\mathrm{ of length n
    Output: Encoding trie for X
    Compute the frequency f(c) of each character c of X.Initialize a priority queue Q.
    for each character c in X do
        Create a single-node tree T storing cQ.insertltem(f(c),T)
    while Q.size() > 1 do
        f
        T1}\leftarrowQ.removeMinElement()f f2 \leftarrowQ.minKey(
        T2}\leftarrowQ.removeMinElement(
        Create a new tree T with left subtree }\mp@subsup{T}{1}{}\mathrm{ and rightsubtree }\mp@subsup{T}{2}{}\mathrm{ .
        Q.insertltem( }\mp@subsup{f}{1}{}+\mp@subsup{f}{2}{}
return tree Q.removeMinElement()
```

- runing time for a text of length n with k distinctcharacters: $\mathrm{O}(\mathrm{n}+\mathrm{k} \log \mathrm{k})$

Image Compression

- we can use Huffman encoding also for binary files(bitmaps, executables, etc.)
- common groups of bits are stored at the leaves
- Example of an encoding suitable for b / w bitmaps

